
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长很多人认为,Scaling Law 正在面临收益递减,因此继续扩大计算规模训练模型的做法正在被质疑。最近的观察给出了不一样的结论。研究发现,哪怕模型在「单步任务」上的准确率提升越来越慢,这些小小的进步叠加起来,也能让模型完成的任务长度实现「指数级增长」,而这一点可能在现实中更有经济价值。
很多人认为,Scaling Law 正在面临收益递减,因此继续扩大计算规模训练模型的做法正在被质疑。最近的观察给出了不一样的结论。研究发现,哪怕模型在「单步任务」上的准确率提升越来越慢,这些小小的进步叠加起来,也能让模型完成的任务长度实现「指数级增长」,而这一点可能在现实中更有经济价值。
这几天,一篇关于向量嵌入(Vector Embeddings)局限性的论文在 AlphaXiv 上爆火,热度飙升到了近 9000。
AI 也要「考古」式科研?
最近,工业界“RAG已死”甚嚣尘上。过去几年,AI领域的主旋律是“规模定律”(Scaling Law),即更大的模型、更多的数据会带来更好的性能。即便偶然有瑕疵,也认为只是工程上的不足,并非数学上的不可能。
原来,Scaling Law在32年前就被提出了! 不是2020年的OpenAI、不是2017年的百度,而是1993年的贝尔实验室。
GPT-5发布半月,却被连连吐槽。如今,一张基准与GPT-4对比基准测试图,证明了Scaling Law没有撞墙。七年间,从GPT-1到GPT-5十四个花式Prompt对决,实力差一目了然。
蛋白质模型的GPT时刻来了! 清华大学智能产业研究院(AIR)周浩副教授课题组联合上海人工智能实验室发布了AMix-1: 首次以Scaling Law、Emergent Ability、In-Context Learning和Test-time Scaling的系统化方法论来构建蛋白质基座模型。
OpenAI前研究员、Meta「AI梦之队员」毕书超在哥大指出:AGI就在眼前,突破需高质数据、好奇驱动探索与高效算法;Scaling Law依旧有效,规模决定智能,终身学习才是重点。
GPT-5更近了!今天,神秘模型Horizon Alpha火遍全网,编码首测性能逆天,各种三方基准实测相继放出。就在发布前夕,OpenAI核心大脑专访坦言模型还有瓶颈,但坚信Scaling Law没有尽头。
Anthropic 联合创始人 Jared Kaplan 是一名理论物理学家,研究兴趣广泛,涉及有效场论、粒子物理、宇宙学、散射振幅以及共形场论等。过去几年,他还与物理学家、计算机科学家们合作开展机器学习研究,包括神经模型以及 GPT-3 语言模型的 Scaling Law。